

MEMORIAL DESCRITIVO DA OBRA

1. OBJETO

Serão executados os serviços de Revitalização de Vias Urbanas, com Recapeamento sobre calçamentos do tipo Bloquete com Concreto Betuminoso Usinado a Quente (CBUQ) nas vias constantes do Quadro de Áreas no Centro de Ouvidor (GO), na espessura média de 6,0 (Seis) centímetros (compactada).

2. JUSTIFICATIVA DA OBRA E MODALIDADE DE EXECUÇAO

A cidade de Ouvidor (GO) possui revestimentos do tipo "Calçamento com Bloquete" e "Asfaltos".

A opção em executar o recapeamento com a massa CBUQ é em atendimento à população que reclama muito pela falta de conforto (ruído e trepidação) ao trafegar nas vias que contem o revestimento do tipo Bloquete.

Os serviços serão executados por Administração Indireta, com a contratação da obra através de licitação pública.

3. MEMORIAL FOTOGRAFICO DO LOCAL DA OBRA

O memorial fotográfico foi elaborado com vista a retratar todos os locais e/ou pontos de interesse da obra, bem como os logradouros a restaurar.

4. PREPARAÇAO DO LOCAL DA OBRA (VIA PUBLICA) PARA RECEBER OS SERVIÇOS DE RECAPEAMENTO ASFALTICO

4.1 Sinalização do Local de Trabalho

Efetuar a sinalização do local de trabalho com o bloqueio total ou parcial da via que irá receber a intervenção.

4.2 Execução dos Serviços de Reparos Localizados

Ao longo das vias a serem recapeadas, existem irregularidades com afundamentos pontuais que devem ser reparados com a retirada do calçamento local correção da camada de Subleito para o seu melhor nivelamento longitudinal.

Foi estimada uma área de 500 m², não sendo prevista a reposição de Bloquete, face às condições gerais dos calçamentos.

5. SERVICOS DE PODA DE ARVORES

Realizar a poda de árvores que possam atrapalhar a passagem da Vibroacabadora com o Caminhão Basculante com massa do tipo CBUQ. Este trabalho deve ser realizado em conjunto com a Secretaria Municipal do Meio Ambiente de Ouvidor.

6. SERVIÇOS DE LIMPEZA DA VIA PUBLICA

Depois de executadas as correções pontuais na via, deve ser realizada a sua limpeza através de varrição manual ou mecânica ou até uso de lavagem da via através de Caminhão Pipa de Água.

7. SERVIÇOS DE PINTURA DE LIGAÇAO

Depois de efetuada a limpeza da via pública, com a pista limpa e seca, executar os serviços de Pintura de Ligação.

A pintura de ligação deve ser feita com Emulsão Asfáltica – RR1C diluída em água na proporção de 40% RR1C x 60% Água, com a taxa de aplicação de 1,0 kg/m². Sua aplicação deve ser feita através de Caminhão Espargidor de Asfalto.

Fazer, sempre, a pintura de ligação na faixa de trabalho.

8. <u>SERVIÇOS RECAPEAMENTO COM CONCRETO BETUMINOSO</u> USINADO A QUENTE (CBUQ)

8.1 Especificações Básicas de Materiais e Serviços

8.1.1 Limpeza

Deverão ser removidos os materiais argilosos e vegetais em toda a superfície do revestimento existente e a superfície deverá ser varrida e lavada de forma que todos os detritos sejam retirados, deixando a superfície limpa e isenta de pó, com uso de vassourão mecânico ou soprador costal para remoção de pedras e detritos.

8.1.2 Pintura de Ligação

A pintura de ligação consistirá na distribuição de uma película de material betuminoso, diretametno sobre a superfície a ser recapeada, previamente limpa. Para a execução da pintura de ligação será empregada a emulsão asfáltica catiônica tipo RR-1C, diluída em água à razão de 40% de RR1C e 60% de água e aplicada a uma taxa diluída de 1,5 l/m².

8.1.3 CBUQ - Concreto Betuminoso Usinado a Quente

O CBUQ – Concreto Betuminoso Usinado à Quente, com utilização de CAP 50/70 ou CAP 30/45, será produzido em usina licenciada, atendendo às especificações técnicas do DNIT, com faixa granulométrica "C" e ensaios de caracterização conforme a Norma DNIT 031/2006-ES.

O transporte da massa asfáltica será feito com caminhão basculante com a caçamba devidamente preparada para receber a massa CBUQ, com antiaderente químico especificado, não sendo permitido o uso de óleo diesel ou cal, e lona própria para a manutenção da temperatura, levando em consideração os dispositivos da Norma DNIT 031/2006-ES, quanto à execução de capa de rolamento com CBUQ.

8.1.4 Condições Gerais

O concreto asfáltico pode ser empregado como revestimento, camada de ligação (binder), base, regularização ou reforço do pavimento.

Não é permitida a execução dos serviços, objeto desta Especificação, em dias de chuva.

O concreto asfáltico somente deve ser fabricado, transportado e aplicado quando a temperatura ambiente for superior a 10°C.

Todo o carregamento de cimento asfáltico que chegar à obra deve apresentar por parte do fabricante/distribuidor certificado de resultados de análise dos ensaios de caracterização exigidos pela especificação, correspondente à data de fabricação ou ao dia de carregamento para transporte com destino ao canteiro de serviço, se o período entre os dois eventos ultrapassar de 10 dias. Deve trazer também indicação clara da sua procedência, do tipo e quantidade do seu conteúdo e distância de transporte entre a refinaria e o canteiro de obra.

8.1.5 Materiais

Os materiais constituintes do concreto asfáltico são agregado graúdo, agregado miúdo, material de enchimento filer e ligante asfáltico, os quais devem satisfazer às Normas pertinentes, e às Especificações aprovadas pelo DNIT.

8.1.6 Equipamentos

Os equipamentos necessários à execução dos serviços serão adequados aos locais de instalação das obras, atendendo ao que dispõem as especificações para os serviços.

Devem ser utilizados, no mínimo, os seguintes equipamentos:

a) Depósito para ligante asfáltico

Os depósitos para o ligante asfáltico devem possuir dispositivos capazes de aquecer o ligante nas temperaturas fixadas nesta Norma. Estes dispositivos

também devem evitar qualquer superaquecimento localizado. Deve ser instalado um sistema de recirculação para o ligante asfáltico, de modo a garantir a circulação, desembaraçada e contínua, do depósito ao misturador, durante todo o período de operação. A capacidade dos depósitos deve ser suficiente para, no mínimo, três dias de serviço.

No caso da Pintura de Ligação, será prevista a instalação de 1 (Um) Tanque Metálico Estacionário em Ouvidor (GO), visando a estocagem da Emulsão Asfáltica – RR1C.

b) Silos para agregados

Os silos devem ter capacidade total de, no mínimo, três vezes a capacidade do misturador e ser divididos em compartimentos, dispostos de modo a separar e estocar, adequadamente, as frações apropriadas do agregado. Cada compartimento deve possuir dispositivos adequados de descarga. Deve haver um silo adequado para o filer, conjugado com dispositivos para a sua dosagem.

c) Usina para misturas asfálticas

A usina deve estar equipada com uma unidade classificadora de agregados, após o secador, dispor de misturador capaz de produzir uma mistura uniforme. Um termômetro, com proteção metálica e escala de 90° a 210 °C (precisão ± 1 °C), deve ser fixado no dosador de ligante ou na linha de alimentação do asfalto, em local adequado, próximo à descarga do misturador. A usina deve ser equipada além disto, com pirômetro elétrico, ou outros instrumentos termométricos aprovados, colocados na descarga do secador, com dispositivos para registrar a temperatura dos agregados, com precisão de ± 5 °C. A usina deve possuir termômetros nos silos quentes.

Pode, também, ser utilizada uma usina do tipo tambor/secador/misturador, de duas zonas (convecção e radiação), provida de: coletor de pó, alimentador de "filler", sistema de descarga da mistura asfáltica, por intermédio de transportador de correia com comporta do tipo "clam-shell" ou alternativamente, em silos de estocagem.

A usina deve possuir silos de agregados múltiplos, com pesagem dinâmica e deve ser assegurada a homogeneidade das granulometrias dos diferentes agregados.

A usina deve possuir ainda uma cabine de comando e quadros de força. Tais partes devem estar instaladas em recinto fechado, com os cabos de força e comandos ligados em tomadas externas especiais para esta aplicação. A operação de pesagem de agregados e do ligante asfáltico deve ser semi-automática com leitura instantânea e acumuladora, por meio de registros digitais em "display" de cristal líquido. Devem existir potenciômetros para

compensação das massas específicas dos diferentes tipos de ligantes asfálticos e para seleção de velocidade dos alimentadores dos agregados frios.

d) Caminhões basculantes para transporte da mistura

Os caminhões, tipo basculante, para o transporte do concreto asfáltico usinado a quente, devem ter caçambas metálicas robustas, limpas e lisas, ligeiramente lubrificadas com água e sabão, óleo cru fino, óleo parafínico, ou solução de cal, de modo a evitar a aderência da mistura à chapa. A utilização de produtos susceptíveis de dissolver o ligante asfáltico (óleo diesel, gasolina etc.) não é permitida.

e) Equipamento para espalhamento e acabamento

O equipamento para espalhamento e acabamento deve ser constituído de pavimentadoras automotrizes, capazes de espalhar e conformar a mistura no alinhamento, cotas e abaulamento definidos no projeto. As acabadoras devem ser equipadas com parafusos sem fim, para colocar a mistura exatamente nas faixas, e possuir dispositivos rápidos e eficientes de direção, além de marchas para a frente e para trás. As acabadoras devem ser equipadas com alisadores e dispositivos para aquecimento, à temperatura requerida, para a colocação da mistura sem irregularidade.

f) Equipamento para compactação

O equipamento para a compactação deve ser constituído por Rolo Pneumático e Rolo Metálico Liso, tipo tandem vibratório. Os rolos pneumáticos, autopropulsionados, devem ser dotados de dispositivos que permitam a calibragem de variação da pressão dos pneus de 2,5 kgf/cm² a 8,4 kgf/cm².

O equipamento em operação deve ser suficiente para compactar a mistura na densidade de projeto, enquanto esta se encontrar em condições de trabalhabilidade.

Importante:

Todo equipamento a ser utilizado deve ser vistoriado antes do início da execução do serviço de modo a garantir condições apropriadas de operação, sem o que, não será autorizada a sua utilização.

A compactação da massa CBUQ inicia-se com o Rolo de Pneus e posteriormente entra-se com o Rolo Liso Vibratório de Chapa (Tandem).

8.1.7 Execução

A temperatura do cimento asfáltico empregado na mistura deve ser determinada para cada tipo de ligante, em função da relação temperatura-viscosidade. A temperatura conveniente é aquela na qual o cimento asfáltico apresenta uma viscosidade situada dentro da faixa de 75 a 150 SSF, "Saybolt-Furol" (DNER-ME 004), indicando-se, preferencialmente, a viscosidade de 75 a

95 SSF. A temperatura do ligante não deve ser inferior a 107°C nem exceder a 177°C.

Os agregados devem ser aquecidos a temperaturas de 10°C a 15°C acima da temperatura do ligante asfáltico, sem ultrapassar 177°C.

A produção do concreto asfáltico é realizada em usinas apropriadas, conforme anteriormente especificado.

O concreto asfáltico produzido deve ser transportado, da usina ao ponto de aplicação, nos caminhões, tipo basculante, para o transporte do concreto asfáltico usinado a quente, devem ter caçambas metálicas robustas, limpas e lisas, ligeiramente lubrificadas com água e sabão, óleo cru fino, óleo parafínico, ou solução de cal, de modo a evitar a aderência da mistura à chapa, quando necessário, para que a mistura seja colocada na pista à temperatura especificada. Cada carregamento deve ser coberto com lona ou outro material aceitável, com tamanho suficiente para proteger a mistura.

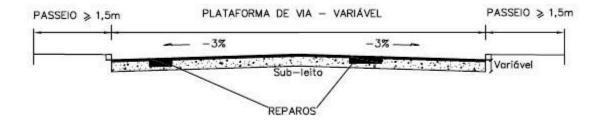
A massa asfáltica deverá ser aplicada na pista somente quando a mesma se encontrar seca e o tempo não se apresentar chuvoso, na área pavimentada, sendo composto pelas seguintes etapas: usinagem, transporte, espalhamento e compactação.

Caso ocorram irregularidades na superfície da camada, estas devem ser sanadas pela retirada da camada de Bloquetees local e correção do afundamento ou irregularidade.

A distribuição do concreto asfáltico deve ser feita por equipamentos adequados, conforme equipamentos especificado para espalhamento, acabamento e compactação, Os equipamentos a serem utilizados para execução dos serviços são: vibro acabadora, que proporcione o espalhamento homogêneo e de maneira que se obtenha a espessura indicada, e os rolos de pneus e tandem liso, que proporcionem a compactação desejada e uma superfície lisa e desempenada.

Após a distribuição do concreto asfáltico, tem início a rolagem. Como norma geral, a temperatura de rolagem é a mais elevada que a mistura asfáltica possa suportar, temperatura essa fixada, experimentalmente, para cada caso.

Caso sejam empregados rolos de pneus, de pressão variável, inicia-se a rolagem com baixa pressão, a qual deve ser aumentada à medida que a mistura seja compactada, e, consequentemente, suportando pressões mais elevadas.


A compactação deve ser iniciada pelos bordos, longitudinalmente, continuando em direção ao eixo da pista. Nas curvas, de acordo com a superelevação, a compactação deve começar sempre do ponto mais baixo para o ponto mais alto. Cada passada do rolo deve ser recoberta na seguinte de, pelo menos, metade da largura rolada. Em qualquer caso, a operação de rolagem perdurará até o momento em que seja atingida a compactação especificada.

Durante a rolagem não são permitidas mudanças de direção e inversões bruscas da marcha, nem estacionamento do equipamento sobre o revestimento recém rolado. As rodas do rolo devem ser umedecidas adequadamente, de modo a evitar a aderência da mistura.

Após a compactação com Rolo de Pneus, prossegue-se com o Rolo Vibratório de Chapa (Tandem).

Os revestimentos recém-acabados devem ser mantidos sem tráfego, até o seu completo resfriamento.

Seção tipo de aplicação de camada de nivelamento em massa asfáltica CBUQ – Concreto Betuminoso Usinado à Quente:

8.1.8 Controle Tecnológico

É obrigatório o Controle Tecnológico das obras de pavimentação asfáltica e será exigido da empresa contratada, responsável pela execução dos serviços de Pavimentação Asfáltica nas Vias Urbanas do município de Ouvidor (GO). A apresentação de Laudo Técnico de Controle Tecnológico e os resultados dos ensaios realizados em cada etapa dos serviços, conforme as recomendações constantes nas especificações de serviço e normas do DNIT disponíveis no sitio www.dnit.gov.br.

8.1.9 Controle dos insumos

Todos os materiais utilizados na fabricação de Concreto Asfáltico (Insumos) devem ser examinados em laboratório, obedecendo a metodologia indicada pelo DNIT, e satisfazer às especificações em vigor.

8.1.9 Cimento asfáltico

O controle da qualidade do cimento asfáltico consta do seguinte:

 – 01 ensaio de penetração a 25°C (DNER-ME 003), para todo carregamento que chegar à

obra:

- 01 ensaio do ponto de fulgor, para todo carregamento que chegar à obra (DNERME 148);
- 01 índice de susceptibilidade térmica para cada 100t, determinado pelos ensaios DNER-ME 003 e NBR 6560;
 - 01 ensaio de espuma, para todo carregamento que chegar à obra;
- 01 ensaio de viscosidade "Saybolt-Furol" (DNER-ME 004), para todo carregamento que chegar à obra;
- 01 ensaio de viscosidade "Saybolt-Furol" (DNER-ME 004) a diferentes temperaturas, para o estabelecimento da curva viscosidade x temperatura, para cada 100t.

8.1.10 Agregados

O controle da qualidade dos agregados consta do seguinte:

- ensaio de desgaste Los Angeles (DNER-ME 035);
- ensaio de adesividade (DNER-ME 078 e DNER-ME 079). Se o concreto asfáltico contiver dope também devem ser executados os ensaios de RTFOT (ASTM D-2872) ou ECA (ASTM-D 1754) e de degradação produzida pela umidade (AASHTO-283/89 e DNERME 138);
 - ensaio de índice de forma do agregado graúdo (DNER-ME 086);
- 02 ensaios de granulometria do agregado, de cada silo quente, por jornada de 8 horas de trabalho (DNER-ME 083);
- 01 ensaio de equivalente de areia do agregado miúdo, por jornada de 8 horas de trabalho (DNER-ME 054);
- 01 ensaio de granulometria do material de enchimento (filer), por jornada de 8 horas de trabalho (DNER-ME 083).

8.1.11 Controle da produção

O controle da produção (Execução) do Concreto Asfáltico deve ser exercido através de coleta de amostras, ensaios e determinações feitas de maneira aleatória de acordo com o Plano de Amostragem Aleatória.

8.1.12 Controle da usinagem do concreto asfáltico

a) Para os Controles da quantidade de ligante na mistura devem ser efetuadas extrações de asfalto, de amostras coletadas na pista, logo após a passagem da acabadora (DNER-ME 053).

A porcentagem de ligante na mistura deve respeitar os limites estabelecidos no projeto da mistura, devendo-se observar a tolerância máxima de ± 0,3. Deve ser executada uma determinação, no mínimo a cada 700 m² de pista.

- b) Para o Controle da graduação da mistura de agregados deve ser procedido o ensaio de granulometria (DNER-ME 083) da mistura dos agregados resultantes das extrações citadas na alínea "a". A curva granulométrica deve manter-se contínua, enquadrando-se dentro das tolerâncias especificadas no projeto da mistura.
- c) Para o Controle de temperatura deverão ser efetuadas medidas de temperatura, durante a jornada de 8 horas de trabalho, em cada um dos itens abaixo discriminados:
 - do agregado, no silo quente da usina;
 - do ligante, na usina;
 - da mistura, no momento da saída do misturador;
 - da mistura, no momento da sua distribuição/aplicação;
 - da mistura, no momento da sua compactação.

As temperaturas podem apresentar variações de ± 5°C das especificadas no projeto da mistura.

d) Para o Controle das características da mistura devem ser realizados ensaios Marshall em três corpos-de-prova de cada mistura por jornada de oito horas de trabalho (DNERME 043) e também o ensaio de tração por compressão diametral a 25°C (DNER-ME 138), em material coletado após a passagem da acabadora. Os corpos-deprova devem ser moldados in loco, imediatamente antes do início da compactação da massa.

Os valores de estabilidade, e da resistência à tração por compressão diametral devem satisfazer ao especificado.

8.1.13 Espalhamento e compactação na pista

Devem ser efetuadas medidas de temperatura durante o espalhamento da massa imediatamente antes de iniciada a compactação. Estas temperaturas devem ser as indicadas, com uma tolerância de ± 5°C.

O controle do grau de compactação - GC da mistura asfáltica deve ser feito, medindo-se a densidade aparente de corpos-de-prova extraídos da mistura espalhada e compactada na pista, por meio de brocas rotativas e comparando-se os valores obtidos com os resultados da densidade aparente de projeto da mistura.

Devem ser realizadas determinações em locais escolhidos, aleatoriamente, durante a jornada de trabalho, não sendo permitidos GC inferiores a 97% ou superiores a 101%, em relação à massa específica aparente do projeto da mistura.

8.1.14 <u>Verificação do produto</u>

A verificação final da qualidade do revestimento de Concreto Asfáltico (Produto) deve ser exercida através das seguintes determinações, executadas de acordo com o Plano de Amostragem Aleatório:

8.1.14.1 Espessura da camada

Deve ser medida por ocasião da extração dos corpos-de-prova na pista, ou pelo nivelamento, do eixo e dos bordos; antes e depois do espalhamento e compactação da mistura. A espessura média compactada será de 6 (Seis) centímetros. Admite-se a variação de ± 5% em relação às espessuras de projeto.

8.1.14.2 Alinhamentos

A verificação do eixo e dos bordos deve ser feita durante os trabalhos de locação e nivelamento nas diversas seções correspondentes às estacas da locação. Os desvios verificados não devem exceder ± 5cm.

8.1.14.3 Acabamento da superfície

Durante a execução deve ser feito em cada estaca da locação o controle de acabamento da superfície do revestimento, com o auxílio de duas réguas, uma de 3,00m e outra de 1,20m, colocadas em ângulo reto e paralelamente ao eixo da estrada, respectivamente. A variação da superfície, entre dois pontos quaisquer de contato, não deve exceder a 0,5cm, quando verificada com qualquer das réguas.

8.2 Recomendações Gerais

- a) A massa asfáltica deve ser produzida em Usina de Asfalto a Quente:
- b) A Usina de Asfalto a Quente deve ser instalada no local da obra ou em outro local adequado;
- c) A empresa responsável pela obra deve providenciar a elaboração do Traço de Mistura completo, com indicação das quantidades de materiais pétreos e ligante (CAP50/70 ou CAP30/45);
- d) Seguir as recomendações estabelecidas na Especificação de Serviço DNIT 031/2006 ES – Concreto Asfáltico;
- e) De posse do traço, providenciar a calibragem da Usina de Asfalto;
- f) Fazer o transporte da massa CBUQ através de Caminhões Basculantes com a caçamba levemente umedecida com sabão ou diesel;
- g) Fazer a distribuição da massa asfáltica CBUQ através de Vibro Acabadora Autopropelida de Pneus ou Esteira;
- h) Fazer a compactação da massa asfáltica CBUQ inicialmente com Rolo Compactador Autopropelido de Pneus;
- i) Prosseguir a compactação através do Rolo Compactador Autopropelido Vibratório de Chapa ou Liso.

9. REFERENCIA BIBLIOGRAFICA

- 9.1 DNIT 031/2006 ES-P Concreto Asfáltico;
- 9.2 DNIT 145/2012 ES-P Pintura de ligação;
- 9.3 RESOLUÇAO ANP nº 36, de 13/11/2012;

Ouvidor (GO), 13 de novembro de 2020.

Cordialmente,

OMAR CARDOSO ROSA FILHO
ENGENHEIRO CIVIL – CREA 14.476/D-DF
PREFEITURA MUNICIPAL DE OUVIDOR
DEPARTAMENTO DE ENGENHARIA